3.109 \(\int \frac{\cot ^2(e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=113 \[ \frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f}-\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f}-\frac{\cot (e+f x)}{a f \sqrt{a \sin (e+f x)+a}} \]

[Out]

(3*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(a^(3/2)*f) - (2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e +
 f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*f) - Cot[e + f*x]/(a*f*Sqrt[a + a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.228806, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2715, 2985, 2649, 206, 2773} \[ \frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f}-\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a}}\right )}{a^{3/2} f}-\frac{\cot (e+f x)}{a f \sqrt{a \sin (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(3*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(a^(3/2)*f) - (2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e +
 f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*f) - Cot[e + f*x]/(a*f*Sqrt[a + a*Sin[e + f*x]])

Rule 2715

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> -Simp[(a + b*Sin[e + f
*x])^(m + 1)/(a*f*Tan[e + f*x]), x] + Dist[1/b^2, Int[((a + b*Sin[e + f*x])^(m + 1)*(b*m - a*(m + 1)*Sin[e + f
*x]))/Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && LtQ[m, -1]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\cot ^2(e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx &=-\frac{\cot (e+f x)}{a f \sqrt{a+a \sin (e+f x)}}+\frac{\int \frac{\csc (e+f x) \left (-\frac{3 a}{2}+\frac{1}{2} a \sin (e+f x)\right )}{\sqrt{a+a \sin (e+f x)}} \, dx}{a^2}\\ &=-\frac{\cot (e+f x)}{a f \sqrt{a+a \sin (e+f x)}}-\frac{3 \int \csc (e+f x) \sqrt{a+a \sin (e+f x)} \, dx}{2 a^2}+\frac{2 \int \frac{1}{\sqrt{a+a \sin (e+f x)}} \, dx}{a}\\ &=-\frac{\cot (e+f x)}{a f \sqrt{a+a \sin (e+f x)}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{a f}-\frac{4 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{a f}\\ &=\frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{a^{3/2} f}-\frac{2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (e+f x)}{\sqrt{2} \sqrt{a+a \sin (e+f x)}}\right )}{a^{3/2} f}-\frac{\cot (e+f x)}{a f \sqrt{a+a \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 2.1984, size = 206, normalized size = 1.82 \[ \frac{\left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3 \left (-\cot \left (\frac{1}{4} (e+f x)\right )+(16+16 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (e+f x)\right )-1\right )\right )+2 \left (\sec \left (\frac{1}{2} (e+f x)\right )+\sin ^2\left (\frac{1}{4} (e+f x)\right ) \csc (e+f x)-\sin \left (\frac{3}{4} (e+f x)\right ) \sin \left (\frac{1}{4} (e+f x)\right ) \csc (e+f x)+3 \log \left (-\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )+1\right )-3 \log \left (\sin \left (\frac{1}{2} (e+f x)\right )-\cos \left (\frac{1}{2} (e+f x)\right )+1\right )\right )\right )}{4 f (a (\sin (e+f x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*((16 + 16*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e +
 f*x)/4])] - Cot[(e + f*x)/4] + 2*(3*Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - 3*Log[1 - Cos[(e + f*x)/2]
 + Sin[(e + f*x)/2]] + Sec[(e + f*x)/2] + Csc[e + f*x]*Sin[(e + f*x)/4]^2 - Csc[e + f*x]*Sin[(e + f*x)/4]*Sin[
(3*(e + f*x))/4])))/(4*f*(a*(1 + Sin[e + f*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.591, size = 134, normalized size = 1.2 \begin{align*} -{\frac{1+\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) f}\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) } \left ( \sin \left ( fx+e \right ){a}^{2} \left ( 2\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{a}}} \right ) -3\,{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( fx+e \right ) }}{\sqrt{a}}} \right ) \right ) +\sqrt{a-a\sin \left ( fx+e \right ) }{a}^{{\frac{3}{2}}} \right ){a}^{-{\frac{7}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2/(a+a*sin(f*x+e))^(3/2),x)

[Out]

-1/a^(7/2)*(1+sin(f*x+e))*(-a*(-1+sin(f*x+e)))^(1/2)*(sin(f*x+e)*a^2*(2*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(
1/2)*2^(1/2)/a^(1/2))-3*arctanh((a-a*sin(f*x+e))^(1/2)/a^(1/2)))+(a-a*sin(f*x+e))^(1/2)*a^(3/2))/sin(f*x+e)/co
s(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.76445, size = 1133, normalized size = 10.03 \begin{align*} \frac{3 \,{\left (\cos \left (f x + e\right )^{2} -{\left (\cos \left (f x + e\right ) + 1\right )} \sin \left (f x + e\right ) - 1\right )} \sqrt{a} \log \left (\frac{a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} + 4 \,{\left (\cos \left (f x + e\right )^{2} +{\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{a} - 9 \, a \cos \left (f x + e\right ) +{\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} +{\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right ) + \frac{4 \, \sqrt{2}{\left (a \cos \left (f x + e\right )^{2} -{\left (a \cos \left (f x + e\right ) + a\right )} \sin \left (f x + e\right ) - a\right )} \log \left (-\frac{\cos \left (f x + e\right )^{2} -{\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) - \frac{2 \, \sqrt{2} \sqrt{a \sin \left (f x + e\right ) + a}{\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{\sqrt{a}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} -{\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt{a}} + 4 \, \sqrt{a \sin \left (f x + e\right ) + a}{\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{4 \,{\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f -{\left (a^{2} f \cos \left (f x + e\right ) + a^{2} f\right )} \sin \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/4*(3*(cos(f*x + e)^2 - (cos(f*x + e) + 1)*sin(f*x + e) - 1)*sqrt(a)*log((a*cos(f*x + e)^3 - 7*a*cos(f*x + e)
^2 + 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e) - 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a
) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x + e) - a)*sin(f*x + e) - a)/(cos(f*x + e)^3 + cos(f*x +
 e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e) - 1)) + 4*sqrt(2)*(a*cos(f*x + e)^2 - (a*cos(f*x + e)
 + a)*sin(f*x + e) - a)*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*sin(f*x + e)
 + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin
(f*x + e) - cos(f*x + e) - 2))/sqrt(a) + 4*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1))/(a^2*f*
cos(f*x + e)^2 - a^2*f - (a^2*f*cos(f*x + e) + a^2*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{2}{\left (e + f x \right )}}{\left (a \left (\sin{\left (e + f x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral(cot(e + f*x)**2/(a*(sin(e + f*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 2.48466, size = 656, normalized size = 5.81 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

1/2*((6*sqrt(2)*sqrt(a)*arctan((sqrt(2)*sqrt(a) + sqrt(a))/sqrt(-a)) - 8*sqrt(2)*sqrt(a)*arctan(sqrt(a)/sqrt(-
a)) - 3*sqrt(2)*sqrt(-a)*log(sqrt(2)*sqrt(a) + sqrt(a)) + 6*sqrt(a)*arctan((sqrt(2)*sqrt(a) + sqrt(a))/sqrt(-a
)) - 16*sqrt(a)*arctan(sqrt(a)/sqrt(-a)) - 3*sqrt(-a)*log(sqrt(2)*sqrt(a) + sqrt(a)) - sqrt(2)*sqrt(-a) - 3*sq
rt(-a))*sgn(tan(1/2*f*x + 1/2*e) + 1)/(sqrt(2)*sqrt(-a)*a^(3/2) + sqrt(-a)*a^(3/2)) + 8*sqrt(2)*arctan(-1/2*sq
rt(2)*(sqrt(a)*tan(1/2*f*x + 1/2*e) - sqrt(a*tan(1/2*f*x + 1/2*e)^2 + a) + sqrt(a))/sqrt(-a))/(sqrt(-a)*a*sgn(
tan(1/2*f*x + 1/2*e) + 1)) - 6*arctan(-(sqrt(a)*tan(1/2*f*x + 1/2*e) - sqrt(a*tan(1/2*f*x + 1/2*e)^2 + a))/sqr
t(-a))/(sqrt(-a)*a*sgn(tan(1/2*f*x + 1/2*e) + 1)) + 3*log(abs(-sqrt(a)*tan(1/2*f*x + 1/2*e) + sqrt(a*tan(1/2*f
*x + 1/2*e)^2 + a)))/(a^(3/2)*sgn(tan(1/2*f*x + 1/2*e) + 1)) + sqrt(a*tan(1/2*f*x + 1/2*e)^2 + a)/(a^2*sgn(tan
(1/2*f*x + 1/2*e) + 1)) + 2/(((sqrt(a)*tan(1/2*f*x + 1/2*e) - sqrt(a*tan(1/2*f*x + 1/2*e)^2 + a))^2 - a)*sqrt(
a)*sgn(tan(1/2*f*x + 1/2*e) + 1)))/f